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Exotic Coherent Structures in the (2 1 1)-
Dimensional Breaking-Soliton Equations

Zhang Jiefang1,2
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Hirota’ s bilinear form of the (2 1 1)-dimensional breaking-soliton equations
introduced by Bogyovlenskii is deduced in a straightforward manner and used
to construct wave-type solutions for the field variables. The peculiar localization
behavior of the system by the generating dromion for the composite field variable
qr is also brought out and is generalized to (1, N, 1) dromions.

The (2 1 1)-dimensional breaking-sol iton equations

qt 5 iqxy 2 2iq - 2 1
x (qr)y (1a)

rt 5 2 irxy 1 2ir- 2 1
x (qr)y (1b)

were first studied in a series of papers by Bogoyovlenskii.(1,2) Similar equa-
tions were also studied by Calogero and Degasperis.(3) These equations were

used to describe the (2 1 1)-dimensional interaction of Riemann wave propa-

gation along the y axis with long-wave propagation along the x axis. The

simplest ª breaking-solitonº solution of Eq. (1), for example, can be put into

the following form (1,2):

(q(x, y, t), r(x, y, t)) 5 (Q(x, t, l ( y, t), R(x, t, l ( y, t))) (2)

where for fixed value of l ( y, t), (Q, R) gives a soliton solution for the

nonlinear SchroÈ dinger equation, while l ( y, t) satisfies the Riemann wave

equation. For any fixed initial value of l ( y, t), l ( y, t) ultimately ª breaksº to

1 Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004, China, and
Research Center of Engineering Science, Zhejiang University of Technology, Hangzhou
310032, China.

2 Mailing address: College of Foundation Science, Zhejiang University of Technology, Hangzhou
310032, Zhejiang, China; e-mail: zgd@public.hz.z j.cn.

2253

0020-7748/99/0800-225 3$16.00/0 q 1999 Plenum Publishing Corporation



2254 Zhang

a multivalued function; thus (Q, R) also ª breaksº to give a multivalued

solution of Eqs. (1). Bogoyovlenski i presented the Lax pairs and the Hamilto-

nian structures for these equations, and showed that these equations can be
solved via the inverse scattering method. Li(4) showed by using a recursion

operator that Eqs. (1) possess an infinite set of symmetries; these symmetries

constitute an infinite-dimensional Lie algebra. Li and Zhang(5) constructed

infinitely many symmetries of Eqs. (1) by using the infinitesimal version of

the ª dressingº method and proved that these symmetries constitute an infinite-

dimensional Lie algebra which contains some Abelian and Virasoro subalge-
bras. In this paper we solve the exact solitary wave solution of Eqs. (1).

To investigate the solution of Eqs. (1), we use the transformation

(qr)y 5 Vx (3)

where V is some arbitrary potential, so that Eqs. (1) are converted into a

system of three coupled partial differential equations

qt 5 iqxy 2 2iqV (4a)

rt 5 2 irxy 1 2irV (4b)

(qr)y 5 Vx (4c)

In order to write these equations in the bilinear form we introduce new

dependent variables by

q 5
g

F
, r 5

h

F
, V 5 2

- 2

- x - y
log F (5)

where g 5 g(x, y, t), h 5 h(x, y, t), F (x, y, t) are differentiable functions,

and then substitute into Eqs. (4) to obtain

(Dt 2 iDxDy)g ? F 5 0 (6a)

(Dt 1 iDxDy)h ? F 5 0 (6b)

D2
x F ? F 5 2 2gh (6c)

We now expand the functions g, h, and F in the form of power series as

g 5 e g(1) 1 e (3)g(3) 1 . . .

h 5 e h(1) 1 e (3)h(3) 1 . . . (7)

F 5 e 2 F (2) 1 e 4 F (4) 1 . . .

Substituting Eqs. (7) into Eqs. (6) and comparing various powers of e , we

obtain the following set of equations
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e : gt 2 igxy 5 0 (8a)

ht 1 ihxy 5 0 (8b)

e 2: F (2)
xx 5 2 g(1) h(1) (9)

e 3: g(3) 2 ig(3)
xy 5 2 (Dt 2 iDxDy)g

(1) ? F (2) (10a)

h(3) 1 ih(3)
xy 5 2 (Dt 1 iDxDy)h

(1) ? F (2) (10b)

e 4: 2 F (4)
xy 1 D2

x F (2) ? F (2) 5 2 2(g(1)h(3) 1 h(1)g(3)) (11)

and so on.

To generate line-soliton solutions, one has to first solve Eqs. (8a) and

(8b) explicitly. Solving Eqs. (8a) and (8b), we have

g 5 o
n

i 5 1

exp( j i), j i 5 iki li t 1 ki x 1 li y (12a)

h 5 o
n

i 5 1

exp( j 8i ), j 8i 5 2 ik8i l8i t 1 k8i x 1 l8i y (12b)

where ki , k8i , li , l8i are arbitrary real constants.
To generate a one-soliton solution, we put n 5 1 to give

g 5 exp( j 1), h 5 exp( j 81) (13)

Substituting Eqs. (13) into Eq. (9), we get

F (2)
xx 5 2 exp( j 1 1 j 81) (14)

Integrating this equation, we obtain the particular solution

F (2) 5 exp( j 1 1 j 81 1 c ), exp( c ) 5 2
1

(k1 1 k81)
2

(15)

Substituting Eqs. (13) and (15) into Eqs. (10) and (11), one can indeed choose
g(3), h(3), and F (4) to be zero, so that the series (7) truncates. Thus we have

solutions of the type

q 5
g

F
5

exp( j 1)

1 1 exp( j 1 1 j 81 1 c )
(16a)

r 5
h

F
5

exp( j 81)

1 1 exp( j 1 1 j 81 1 c )
(16b)

The potential V is now described by a solitary-wave solution
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V 5 #
x

2 `

(qr)y dx 5 2
(l1 1 l81)(k1 1 k81)

4
sec h2 1

2
( j 1 1 j 81 1 c ) (17)

Further, from (16), we find the interesting fact that the composite field qr is

described by

qr 5 2
(k1 1 k81)

2

4
sec h2 1

2
( j 1 1 j 81 1 c ) (18)

It is evident from Eqs. (17) and (18) that as the combined parameter

(k1 1 k81) ® 0, both the potential V and the composite field qr vanish. But,

when only (l1 1 l81) ® 0, the potential V alone vanishes, whereas the compos-

ite field qr, which denotes the physical quantity * y
2 ` Vx dy8, survives.

To generate a (1,0,1) dromion, we now take the ansatz

F 5 1 1 a exp z 1 1 K exp j 1 (19)

where a and K are arbitrary positive constants and z 1 takes the special form

z 1 5 k1x (20)

Substituting Eq. (19) with (20) into Eq. (6c), one obtains

2 k2
1 (a exp z 1 1 K exp j 1) 5 gh (21)

This equation suggests that the functions g and h take the form

g 5 a exp z 1 1 K exp j 1, h 5 2 k2
1 (22)

Substituting Eq. (19) and (22) into Eq. (5), we get

q 5
g

F
5

a exp z 1 1 K exp j 1

1 1 a exp z 1 1 K exp j 1

,

(23)

r 5
h

F
5 2

k2
1

1 1 a exp z 1 1 K exp j 1

It can be seen that the field variables q and r are again bounded, but nonde-

caying along certain lines (line solitons). But the physical quantity qr is

described by a dromion as

qr 5 2
ak2

1 exp z 1 1 Kk2
1 exp j 1

(1 1 a exp z 1 1 K exp j 1)
2 (24)

which is exponentially localized with one bound state in the x direction and

one bound state in the j 1 direction.

Similarly, we also obtain
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q 5
g

F
5 2

k81

1 1 a exp z 81 1 K exp j 81
,

(25)

r 5
h

F
5

a exp z 81 1 K exp j 81

1 1 a exp z 81 1 K exp j 81

whereas the physical quantity qr is

qr 5 2
ak82

1 exp z 81 1 Kk82
1 exp j 81

(1 1 a exp z 81 1 K exp j 81)
2

(26)

which is exponentially localized.

This can be easily generalized to multidromions. To construct the (1, 1, 1)
dromion we now take

F 5 1 1 a exp z 1 1 b exp x 1 1 K exp j 1, x 1 5 l1y (27)

Substituting this equation into Eq. (6c), we obtain

2 k2
1[a exp z 1 1 K exp j 1 1 ab exp( x 1 1 z 1)

1 bk exp( x 1 1 j 1)] 5 gh (28)

This equation again suggests that

g 5 a exp z 1 1 K exp j 1, h 5 2 k2
1 (1 1 b exp x 1) (29)

Using Eqs. (27) and (29), we get the (1,1,1) dromion as

qr 5 2 k2
1

(a exp z 1 1 K exp j 1)(1 1 b exp x 1)

(1 1 a exp z 1 1 b exp x 1 1 K exp j 1)
2 (30)

This expression describes an exponentially localized solution with one bound

state in the x direction and one bound state in the y direction as well as one

bound state in the j 1 direction.

Similarly, we also obtain

qr 5 2 k82
1

(a exp z 81 1 K exp j 81)(1 1 b exp x 81)

(1 1 a exp z 81 1 b exp x 81 1 K exp j 81)
2

,

z 81 5 k81 x, (31)

x 81 5 l81 y

The above analysis can be further generalized to the (1, 2, 1) dromion. It

has the form



2258 Zhang

qr 5 2 k2
1

(a exp z 1 1 K exp j 1)(1 1 b exp x 1 1 c exp x 2)

(1 1 a exp z 1 1 K exp j 1 1 b exp x 1 1 c exp x 2)
2 (32)

which represents one bound state in the x direction and two bound states in

the y direction as well as one bound state in the j 1 direction. The (1, N, 1)

dromion can be similarly obtained,

qr 5 2 k2
1

(a exp z 1 1 K exp j 1)(1 1 o
N

i 5 0
si exp x i)

(1 1 a exp z 1 1 K exp j 1 1 o
N

i 5 1

si exp x i)
2

, x i 5 li y

(33)

or

qr 5 2 k82
1

(a exp z 81 1 K exp j 81)(1 1 o
N

i
si exp x 8i )

2

(1 1 a exp z 81 1 K exp j 81 1 o
N

i
si exp x 8i1)

2

, x 8i 5 l8i y

(34)

which represents one bound state in the x direction and N bound states in
the y direction as well as one bound state in the j 1 (or j 81) direction.

Obviusly by taking K 5 0, the (1, N ) dromions can be easily generated.

A natural question arises of whether one can construct (N, 1, 1) dromions

(N . 1) and then (N, M, L) dromions by extending the above procedure.

Unfortunately, such an extension leads to inconsistencies and hence the prob-

lem of constructing (N, M, L) dromions remains open.
In summary, we have derived the bilinear form of the (2 1 1)-dimensional

breaking-soliton equations introduced by Bogoyovlenskii and deduced the

line-soliton solutions for composite field qr. We have also brought out the

peculiar localization behavior of the breaking-soli ton equations by the gener-

ating dromion for the physical quantity qr 5 * y
` Vx dy (the composite field)

and generalized it to the (1, N, 1) dromion.
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